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Bernal (1964) and Scott, Charlesworth & Mak (1964) 
have considered the mechanical packing of hard 
spheres, and showed how a plane surface can initiate 
order in vibrating balls. Opal forms in cavities which 
are frequently parallel sided seams, so that a similar 
process could operate. Occasional specimens have been 
found where the fault plane is parallel to the sides of 
the cavities, but a systematic examination of many 
specimens showed that the effect is not general, and 
the fault planes mostly take up random orientations. 

The optical micrograph, Fig. 12(a), shows a series of 
grey domains separated by parallel black or white lines. 
In this sample ).max=5500/~ (green), i.e. r= 1100 A, 
and the spacing of the layers is 1800 A. At the mag- 
nification of the micrograph, the layers would appear 
0.2 mm apart. The line widths therefore correspond to 
a few layers, and their separation is between 5 and 20 
interlayer distances. Because this image is made from 
diffracted beams only, the intensities of the bands re- 
present the relative intensities of diffraction from these 
areas, and therefore the extent of ordering within them. 
In this orientation [sample set as in Fig. 10(a)] the dif- 
fracted intensities from domains whose structures were 
h.c.p., random, or f.c.c, would be expected to decrease 
in that order. The fringes crossing the bands [Fig. 12(b)] 
are probably Fourier images (Cowley & Moodie, 1957), 
produced by the diffracted beam passing back through 
the periodic structure. 

In 1845 Sir David Brewster examined opal in an 
optical microscope and recorded that 'the colours are 
generally arranged in parallel bands', and deduced 
' that  the colorific planes or patches consists of minute 
pores or vacuities arranged in parallel l ines . . ,  to oc- 
cupy a space in three dimensions' (Brewster, 1845). It 

seems unlikely that he could have resolved the pore 
structure of opal, and it is more likely that he saw the 
fringe pattern [Fig. 12(b)] and interpreted it correctly. 

I am very grateful for the assistance of Mr D.Pit- 
kethley for carrying out many of the initial measure- 
ments and photography. Melbourne jewellers have been 
very helpful by providing samples of opals, and making 
gems available for examination. 
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The temperature factor for an atom undergoing librational motion is usually expressed in the form of 
the Debye-Waller factor appropriate to a translational oscillation with an equivalent root-mean-square 
amplitude. As a result of this the atomic positions may depart significantly from their true positions, 
and in an X-ray structure analysis the effect on the final difference density hinders the study of bonding 
electron distributions. A new form of the temperature factor for thermal librations which obviates 
these difficulties is proposed. 

The Debye-Waller factor (Debye, 1913, 1914) was in- 
troduced to account for the effect of translational oscil- 
lations, i.e. vibrations, on the scattering of X-rays. The 
original expressions have been generalized to include 
the effects of anisotropy on this type of thermal mo- 
tion (Cruickshank, 1956a), and these have generally 

been used as an approximation to describe mixtures of 
anisotropic translational and librational motions. 

The effect of this assumption on the atomic positions 
from a structure analysis have been investigated by 
Cruickshank (1956b, 1961) and by Busing & Levy 
(1964). Cruickshank proposed corrections which are 
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readily applied when the thermal motion of the system 
may be described by a rigid body model, but Busing & 
Levy showed that in more general cases the correc- 
tions take on a wide range of values depending on the 
nature of the oscillatory motion that is assumed. The 
central problem in calculating these corrections is the 
determination of the angle of oscillation, which for a 
given linear amplitude is specified by the distance of 
the librating atom from the oscillation centre. The 
shortcomings of this treatment of librational motion 
also hamper the study of the effects of the bonding 
electron distribution in the difference synthesis if these 
are obscured by residual features resulting from inade- 
quate thermal corrections. (See, e.g. Tulinsky & Wor- 
thington, 1959.) 

The scattering from a hindered rotator has been 
considered in detail by Atoji, Watanab6 & Lipscomb 
(1953) and more recently by Brown & Chidambaram 
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Fig. 1. (a) Librational motion projected down the rotation 
axis PP'. ot is the angle between OP and H projected on the 
plane OPQ. OX is the continuation of the projection of H. 
(b) Projection on a plane perpendicular to XP. 

(1967). The exact expressions are rather cumbersome, 
however, and simpler temperature factors appropriate 
to librational motions of small amplitude may be 
derived as follows: Assuming that each element of 
scattering density in the atom executes the same motion 
as the nucleus the temperature factor T ,  of an atom is 
given by 

Tn =exp  {2rd H .  r) (1) 

where H is a vector in reciprocal space, r is a vector 
from the rest position of the nucleus to a point along 
the trajectory, and the mean is taken over all positions 
weighted according to their relative probability. Con- 
sider Fig. l(a) and (b), from which it is obvious that 

Tn=ex  p {4~iR sin (6/2) H sin [~-(6/2)] cos fl}. (2) 

For a harmonic libration the probability distribu- 
tion over each of the points in the trajectory may be 
described by the smearing function (2~zA/ )  -1 /2  exp 
{ -62/2A 2} (Bloch, 1932), where A is the r.m.s, angular 
amplitude of oscillation. For small corrections sin 6 
and sin 2 (6/2) may be replaced by 6 and 62/4 to a good 
approximation, so that 

+ 2zrieH,t6}d6 . (3) 

The limits of integration may be extended to infinity 
in either direction without introducing further error, 
so that 

Tn=(1  +2~ziRHRA2)-1/2 exp (--2(rcRH,A)2 

×(1 +2rciRHRA2)-x}.  (4) 
Setting 

A = nRH,  HRA 2, B = 1 + 4A 2 , H - 2  

7 = tan-I(2~RHRA 2); - ~z/2 < y < ~/2 
r/= 4z~RAZH~ 1B-1 - -  y/2 

T a =  B-1/4 exp { -  2~zZRZH,,2AZB-l + irl} . (5) 

The accuracy of the expression is limited by the one- 
term expansions for sin O and sin z (6/2) in equation 
(3), but this approximation should be satisfactory for 
all but the most extreme cases. Greater precision could 
be obtained by including further terms in the expansion. 

Assuming that the rest position of a librating atom 
is known the amplitude and the axis of rotation must 
be defined in order to specify the libration completely. 
This requires five parameters, which may be chosen in 
several different ways. One suitable set is illustrated in 
Fig. 2. rn, r ~r and r± give the coordinates of the point P 
on the rotation axis nearest the librating atom at O. 
The angle ~0 specifies the orientation of the rotation 
axis in the plane perpendicular to OP with respect to 
an arbitrarily chosen axis PN. A is the r.m.s, angular 
amplitude for the libration. It is convenient to choose 
the coordinate system in which P is defined such that 
rn, r u and r l  are parallel to PO, the direction of motion 



at the rest position and the rotat ion axis respectively. 
It is likewise convenient to choose the initial value of 
tp as zero. The derivatives of  Tn with respect to each of  
the parameters  are given in Table 1. 

~Tn 
~:rR 

8Tn 

8Ttt 
8A 

Table 1. Derivat ives  o f  T n  
with respect  to rR, r , ,  r±, A and  ~o 

= THTrB-*[4rcRH,, 2z~2 exp { - i7) + Hnd2 exp {i0z/2 - 7)} 

- 4 A E H n - I B  -~ exp {i(n/2-27)}]. 

= -  THrcB-a[4A exp { - i T } +  Hud2 exp {i(n/2-7)} 

-- 4A2H,. Hn-2B-  ~ exp {i (n/2 - 27) }]. 

~)TH 
~r± = THrcH±B- t[A2 exp {i(zr/2- 7)} 

- 4A2HR-2B- ~ exp {i(n/2- 27))]. 

8 T H  

,gT~ 
• S fn  ~rR exp (2rc i (H.rn) )  

= - 2TI-pzRdB-~[2nRH,, 2 exp { - i?) + HR exp (i(rr/2- 7) 

-4AEHR-1A-2B-  ~ exp {i(~/2- 27))]. 

= 4THrc2R2H,, H ± d 2 B  -½ exp  ( -- i7}. 

In general the thermal  mot ion of  an a tom will result 
f rom several vibrational and librational motions.  Pro- 
vided these are not correlated the total temperature  
factor is the product  of  those for each separate motion.  
Once satisfactory trial parameters  for the atomic mo- 
tions have been obtained it is possible in principle to 
refine them by a least-squares method.  For  a molecular  
structure, however, such a procedure introduces more 
parameters  than  are necessary. I f  constancy of  bond 
lengths is assumed many  of the parameters  are re- 
stricted, and those for different a toms may be related. 
The best procedure involves refining the min imum 
number  of  parameters  required to specify completely 
each independent  motion,  which may  involve several 
atoms. It is necessary, therefore, to calculate the deriva- 
tives for all the atoms undergoing a l ibration with 
respect to the f rame of reference defined by any one of 
them, say a tom 1. Consider an a tom with cylindrical 
coordinates RE, 02, 22 in the f rame of reference with 
a tom 1 at R~,0,0. The derivatives with respect to the 
parameters  defining the f rame are given in Table 2. A 
term such as 8Fc/SrR,  which appears  in the least- 
squares equations,  then has the form 

~' ~ P 

where f n  is the atomic scattering factor of  an a tom 
with rest position rn, and the summat ion  is over all 
the atoms affected by the libration. 

The procedure can be extended to systems with more  
than one degree of  l ibrational freedom. Consider for 
example, the system with two degrees of  f reedom 
shown in Fig. 3, in which an a tom at O librates about  
a fixed point  P. The rotat ion axes are confined to the 
plane perpendicular  to O P .  The mot ion is specified by 
three parameters ,  Amax and Amtn being the max imum 

Table 2. Derivat ives  o f  TrI f o r  an a tom  at R2, 02, 22, in 
the . f rame o f  re ferences  speci f ied  by  the p a r a m e t e r s  rk ,  

r~;, r±, ,4 and  ~o f o r  an a tom  at  RI ,0 ,O.  

rn', r / ,  r~', d'  and ~0' are the libration parameters for the 
second atom in its own frame of reference. 

~ T H  8TH 8TH 
= cos 02-- sin 0z. 

err ~rn' -b-r7 

8TH 

~r if 

8TH 

8TH 

~'TH 

8TH = 8TH sin 02+ . . . . .  cos02. 
C~rR' ~!r, ' 

Z28 TH Z28 TrI 
= R18rR" cos 02-- ki~r~, sin 02 

+ R2~,TH 1 8TH 
cos 02 . . . . . .  sin 02. 

R18r ±" Rl 8qY 
bTrl 
8 A ' '  

= R2 cTH sin 02+ ~TH tZr± ' -b~' COS 02. 

N 

/ r ,  Q 

V ~ r , 

~ ' P  R , 

Fig. 2. Parameters rm r,., r±, ~0 and d used to define the oscilla- 
tion. A is the root mean square angular amplitude of 
oscillation. 
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Fig. 3. A system with two degrees of librational freedom. 
Zlmax and Z]min are  the maximum and minimum r.m.s. 
angular amplitudes. 
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and minimum amplitudes as a function of 09, and 09max 
being the azimuthal angle for the principal axis with 
the larger amplitude. The temperature factor is the pro- 
duct of two terms Tmaxn and Tminn, and its derivati- 
ves with respect to Amax, Amin, and 09 are 

and 

TminH C3 TminH ~ TrninH 
c3ZJma x , TmaxH ~Amin 

TminH f)Tmaxn ~ TminH 
~09max -{- TmaxH ~09max 

respectively. The partial derivatives have the same 
form as the corresponding terms in Table 1. 

The most important case of three degrees of freedom 
is rigid body libration. If correlated motions are ex- 
cluded nine parameters are required. It is convenient to 
choose three of these as coordinates rl, r2 and r~ spe- 
cifying the point of intersection of the principal axes 
in a right handed system parallel to these axes. Three 
r.m.s, amplitudes A~, zJ 2 and A3 and three azimuthal 
angles 091,092, and 093, defined in a similar manner to the 
analogous quantities in two dimensions, are also re- 
quired. The temperature factor is the product of three 
terms TI.,  TZH, and T3n, and its derivatives with respect 
to rl, z~ 1 and 091 are 

and 

T1H (T2H gT3rl ~r l  + T3H 
#T2H \ I ~ ~ T ~  u 

| , TZH T3H 
t?rl / c~dl 

T1H ( T2H 6qT3H 6qT2H + T3.-- 09, ) 
respectively. The remaining derivatives are obtained by 
symmetry. The partial derivatives are identical in form 
with the corresponding terms in Table 1. 

The procedure can also be extended to include the 
effect of correlated motions. It has been shown recently 

by Schomaker & Trueblood (1966, 1968) that a general 
treatment of rigid body motion should allow for cor- 
relation between vibrations and librations. The effect 
of the component of the correlated vibration in the 
same plane as a libration may be approximated closely 
by a lateral displacement of the rotation axis, while 
that of the perpendicular, or screw component, may 
be described by a rotation of the true rotation axis 
about the radius vector. The amount of the rotation is 
inversely proportional to the length of the radius vec- 
tor. The lateral displacement and the constant of pro- 
portionality can be included in the least-squares refine- 
ment as parameters for the in plane and screw com- 
ponents respectively. 

The author wishes to thank the Nuffield Foundation 
for a Dominion Travelling Fellowship. 
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The structural imperfections in hexagonal gold-cadmium alloys containing 18, 19 and 20 wt.% Cd have 
been investigated by X-ray diffraction methods. An analysis of X-ray diffraction line breadths of 
fault-broadened as well as unbroadened reflexions has been carried out. The stacking fault probability 
is greatest in 18 wt.% Cd alloy and decreases as the cadmium content increases. Evidence for the 
clustering of faults has been found. 

X-ray diffraction provides a good method of studying 
structural defects in metals and alloys. The broadening 
of lines in the X-ray powder spectrum of deformed 

hexagonal metals and alloys is anomalous (Edwards & 
Lipson, 1942). The anomalies are such that only those 
reflexions for which h - k  =3 t  + 1, t being an integer, 

A C 24A - 3 


